Two pith balls carrying equal charges are suspended from a common point by strings of equal length, the equilibrium separation between them is $r.$ Now the strings are rigidly clamped at half the height. The equilibrium separation between the balls now become
$\left( {\frac{r}{{\sqrt[3]{2}}}} \right)$
$\left( {\frac{{2r}}{{\sqrt 3 }}} \right)$
$\left( {\frac{{2r}}{3}} \right)$
${\left( {\frac{1}{{\sqrt 2 }}} \right)^2}$
Why Coulomb’s law is associated with Newton’s $3^{rd}$ law ?
A cube of side $b$ has a charge $q$ at each of its vertices. The electric field due to this charge distribution at the centre of this cube will be
Two identical metallic spheres $A$ and $B$ when placed at certain distance in air repel each other with a force of $F$. Another identical uncharged sphere $C$ is first placed in contact with $A$ and then in contact with $B$ and finally placed at midpoint between spheres $A$ and $B$. The force experienced by sphere $C$ will be.
A certain charge $Q$ is divided into two parts $q$ and $(Q-q) .$ How should the charges $Q$ and $q$ be divided so that $q$ and $(Q-q)$ placed at a certain distance apart experience maximum electrostatic repulsion?
Two charges $ + 4e$ and $ + e$ are at a distance $x$ apart. At what distance, a charge $q$ must be placed from charge $ + e$ so that it is in equilibrium